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AN ITERATION ALGORITHM FOR THE SOLUTION OF THE 

INVERSE BOUNDARY-VALUE PROBLEM OF HEAT CONDUCTION 

S. V. Pavlyuk UDC 536.24 

An iterative procedure is constructed for solving the inverse boundary-value problem 
of heat conductivity in an extremal formulation on the basis of solving a Cauchy 
problem. 

Following [i, 2], the solution of the nonstationary heat-conduction problem 

( T ) - ~  @ ~' (T) \ ~ }  

Tl~=o = O, 

OT 
b 

[ = O, TIx=I = Tw(~:), 
OX Ix=o 

(1) 

(2) 

(3) 

where ~=a0//R 2, X=x/R, R are the dimensionless time, coordinate, and characteristic linear 

dimension, respectively, and cv=Cv/Cv.o, h=h/~0 are the relative values of the bulk specific 

heat and the heat-conduction coefficient, is written in the form 

N-- 1 

T(X, ~)=l im [~O,,(X, Y~)Y,,+I('O+ W(X, u 
N~ ~ n--0 (4) 

where the vector function Y={YI, Y~, ' ' '  , YN} is defined as the solution of the Cauchy 
problem 

dY,~ . =  e ,  Yn+l,  t/. = 1, 2 . . . . .  N •  1, ] 
d'~ I 

N-:- 1 dYN eN . ] 
d----~ = aN(X, Yl)[Tw('f') - -~7(  1, Y)--  ' ~  an( l ,  Yl) Yn+l. ('[)] , }, 

n=0 ] 

Y~l~=0 = 0 

(5) 
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Here s = 2n(2n -- i); the function W(X, Y) takes account of the temperature dependence of 
n 

the thermophysical characteristics of the material, 

We assume that the thermophysicai characteristics of the material depend linearly on 
the temperature 

~(T) = ~ o + ~ T ,  (6) 

do (T) = [% + ,%< 

then the function W(X, Y) in (4) takes the form 

: 2n( %. ~v(x, Y) ~ x  D,~(), (7) 
rt=0 

where ~ (T) is determined from the recursion relations 
n 

n--i+i 
1 + [C-v ~ -- '2i ' ~  2rid /T I fl;, ( '0 - -  -~(YO {';~ ~ (Y,)J'2iA~-i(T) - -  [~,(Y,) ]  A,,_~+,(T) - -  [~" (Y1)] 2i ~ C2~z_2iAv+,( )Ar~_J_v(T)j, 

i=i /:1 /=0 v=0 

Ao (*) = f (*), A~+~ (~) = i8o (r~)/Y(r~)l A~ (,) + A~ (,). 

It is shown in [3] that we can set N = 3-5 in the solution (4), 

In solving the inverse boundary-value heat-conduction problem (IHCP) we consider T (T) 
W 

the desired quantity, For a given T (T) = u(T) we find the change in the temperature f(T) = 
W 

YI(T). Therefore, system (5) can be considered as being controlled with a control vector 

u(T) [4]. 

One of the possible methods to obtain stable approximations of IHCP in such a formula- 
tion is the narrowing down of the domain of allowable solutions [5], i.e., this problem must 
be considered in a conditionally correct formulation [6]. In such an approach the IHCP is 
posed as an extremal problem and consists of minimizing the deviation of the computed 
temperatures from those given in the isolated class of desired functions~ The degree of 
closeness between the computed and given temperatures can be judged by criteria corresponding 
to distances in different functional spaces. 

Let us examine one possible modification~ Following [7], for instance, we take the 
closure 

= [rx (,) - -  ~ ( , ) ]  -+rain (8) 

as a measure of the deviation of the computed value Y~(T) from the experimental. 

Let us illustrate the algorithm presented above in an example of solving a boundary- 
value IHCP in such a formulation for a flat body with constant thermophysical characteristics 
(W(X, Y) = 0, ~ (X, YI) = x2n). We assume that the desired causal characteristic has a 

n 
regular nature, i.eo, is a sufficiently smooth function. 

In the general case, the change of the causal characteristic in time can be arbitrarily 
complex. Let us consider the class of polynomial functions [7] 

< )( - ) " i - !( 
(9) 
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set M, where a~ are unknown coefficients. as a compact 

For a symmetric heat supply, the temperature field of the body has the form (4), where 
the function Y (T) will be defined as the integral of the system of ordinary differential 

n 

equations (5). According to [7] the function u(T) is found by iterating over steps along 

the T axis. The step AT within whose limits the function u(T) is determined should be 

selected from the condition that the thermal perturbations occurring in the period AT at the 
boundary X = 1 would succeed in appearing clearly at the boundary X = 0 at the same period 
of time. 

At the initial time the plate was considered uniformly heated, AT was taken equal to 

0.4, ~ = 10 -9 , and the parameter N = 5. Computations were performed for different points of 

the section X, = 0, 0.3, 0.8, and u(T) was simulated by a second-degree polynomial. Analysis 

C =~ 0--TI ~ obtained for of the results shows that the surface temperature and heat flux ~g(~) X aXlx=l] 

slowly developing thermal processes do not differ, in practice, from the exact solution (the 
error does not exceed 1%). The progress of the point X, deep within the section also does 

not exert any substantial influence on the final result of solving the IHCP. To investigate 
the influence of errors on the solution of the IHCP, the input function was perturbed according 
to a uniform distribution law for random variables. The magnitude of the induced error was 
assumed to be 3, 5, and 10%. It follows from Fig. 1 that the algorithm developed can be 
called self-regularizing since the error in the deviation of the solution obtained from the 
exact value is in the corridor of the induced relative error. 

The methodical computations performed for rapidly developing thermal processes also dis- 
play good agreement between the results obtained and the exact solution (Fig. 2). However, 
progress of the point X, deep into the section degrades the final result of the solution of 
the IHCP somewhat (Fig. 2). An increase in the error at the end of the interval can be ex- 
plained by the sufficiently low degree of the polynomial simulating the u(T). 
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Fig. i. Restoration of the surface temperature of a flat body by 
interaction methods for perturbed input data (N = 5, X, = 0): i) 
exact solution [8]; 2) ~ = 3%; AT = 0.4; 3) 5% and 0.4; 4) 10% and 
0.4; 5) 0 and 0.2. 

Fig. 2. Temperature change on the outer surface of a flat body, 
restored by iteration methods for a heat-stressed process (N=5, 
AT = 0.4): i) exact solution [8]; 2) X, = 0; 3) 0.3; 4) 0.8. 
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It should also be noted that the constraints are necessary for AT since an instability 
is observed in the solution obtained for AT < AT (Fig. i), i.e., the step AT, within 

per 
whose limits u(T) is determined, should be in the domain of allowable values. (For the 

case considered above AT > 0.2.) This imposes a definite constraint on the application of 
this method in engineering. 
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